Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AbstractPolar systems are experiencing major changes that has significant implications for ocean circulation and global biogeochemistry. While these changes are accelerating, access to polar systems is decreasing as ships and logistical capabilities are declining. Autonomous underwater buoyancy gliders have proven to be robust technologies that are capable of filling sampling gaps. Gliders have also provided a more sustained presence in polar seas than ships are able. Along the West Antarctic Peninsula, one of the most rapidly warming regions on this planet, gliders have proven to be a useful tool being used by the international community to link land research stations without requiring major research vessel ship support. The gliders are capable of adaptive sampling of subsurface features not visible from satellites, sustained sampling to characterize seasonal dynamics, and they increasingly play a central role in the management of natural resources. Future challenges to expand their utility include: (A) developing robust navigation under ice, which would allow gliders to provide a sustained bridge between the research stations when ship support is declining, and (B) expanding online resources to provide the international community open access to quality data in near real time. These advances will accelerate the use of gliders to fill critical sampling gaps for these remote ocean environments.more » « less
-
Bernstein, Hans C (Ed.)ABSTRACT The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom,Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCEIn the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatomActinocyclusin coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms.more » « less
-
Abstract The west Antarctic Peninsula (WAP) is a region of marked climatic variability, exhibiting strong changes in sea ice extent, retreat of most of its glaciers, and shifts in the amount and form of precipitation. These changes can have significant impacts on the oceanic freshwater budget and marine biogeochemical processes; it is thus important to ascertain the relative balance of the drivers and the spatial scales over which they operate. We present a novel 7‐year summer‐season (October to March; 2011 to 2018) series of oxygen isotopes in seawater (δ18O), augmented with some winter sampling, collected adjacent to Anvers Island at the WAP. These data are used to attribute oceanic freshwater changes to sea ice and meteoric sources, and to deduce information on the spatial scales over which the changes are driven. Sea ice melt shows significant seasonality (∼9% range) and marked interannual changes, with pronounced maxima in seasons 2013/14 and 2016/17. Both of these extrema are driven by anomalous winds, but reflect strongly contrasting dynamic and thermodynamic sea ice responses. Meteoric water also shows seasonality (∼7% range) with interannual variability reflecting changes in the input of accumulated precipitation and glacial melt to the ocean. Unlike sea ice melt, meteoric water extremes are especially pronounced in thin (<10 m) surface layers close to the proximate glacier, associated with enhanced ocean stratification. Isotopic tracers help to deconvolve the complex spatio‐temporal scales inherent in the coastal freshwater budget, and hence improve our knowledge of the separate and cumulative physical and ecological impacts.more » « less
An official website of the United States government
